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Lie-Backlund groups and the linearisation of differential 
equations 

John J Cullen and James L Reid 
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, 
USA 

Received 25 October 1982 

Abstract. It is shown that groups of Lie-Backlund (LB) transformations which depend 
on non-local variables are related by a change of variables to the LB tangent transformations 
of Ibragimov and Anderson, involving no more than arbitrary-order derivatives. The 
transformation of any LB symmetry operator by an invertible change of variables is 
discussed. It is pointed out that once a differential equation admits an LB operator, then 
a large number of ‘secondary’ equations will admit the same operator. The LB theory 
involving non-local variables and the notion of secondary equations are used to characterise 
group theoretically.the linearisation of the Burgers equation, U <  + uu, -U,, = 0, and of the 
ODE U,, + W 2 ( x ) u + ~ u - 3 = ~ .  

1. Introduction 

The earliest attempts at generalisation of the first-order tangent (contact) transforma- 
tions of Lie (1874a) were made by Lie himself (Lie 1874b, 1880) and by Backlund 
(1873,1876,1880,1882) but it is only in recent times that the precise group-theoretical 
context of these generalisations was established in the work of Ibragimov and Anderson 
(1977) and Anderson and Ibragimov (1979). The last reference contains a concise 
historical account of the work of Lie, Backlund and others followed by an account 
of the authors’ own contributions to the field of groups of continuous transformations. 
This consists of an elaboration of the theory of the Lie-Backlund (LB) groups of 
transformations in which derivatives of arbitrary order appear (infinite-order tangent- 
transformation groups). More recently still, Konopelchenko and Mokhnachev 
(1979, 1980) have augmented the theory of these groups to include transformations 
which depend on integrals (‘non-local’ variables). 

Section 2 of the present paper begins with a short account of the theory of the LB 
groups of Anderson and Ibragimov. The results of Konopelchenko and Mokhnachev 
are then reobtained in a way which shows that the groups of transformations introduced 
by these authors are related to the LB transformations of Ibragimov and Anderson 
(1977) by a change of variables. This probably means that many developments in. 
the theory of LB groups depending on derivatives can be carried over directly to these 
new kinds of groups. It appears that the starting point of such considerations is the 
work of Pirani et a1 (1979) and of Kosmann-Schwarzbach (1979). The application 
of LB groups to the study of differential, integrodifferential and integral equations is 
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1890 J J Cullen and J L Reid 

also discussed in D 2 and an example is given involving the generator of an LB group 
depending on an integral. 

A situation frequently found in applications is that a given differential equation 
is transformed into a new one under the action of a transformation (change of variables) 
which in general is not an LB transformation. Section 3 deals with the corresponding 
transformation of operators acting on the original equation into operators acting on 
the new equation. 

Section 4 begins with an account of certain groups of LB transformations which 
are useful in the study of nonlinear differential equations and which may be related 
to the linearisability of those equations. In general these transformations will depend 
on integrals of functions. In this section they are applied to the study of a number 
of specific ordinary and partial differential equations which are known, ab initio, to 
be linearisable. The particular examples were chosen for the variety of different 
aspects of this kind of application which they exhibit and some of them are worked 
out in detail. It is found possible to characterise group theoretically the linearisation 
of each equation considered. 

The precise group-theoretical characterisations set down here are new results and 
they hinge largely on the ability to handle groups of transformations involving integrals 
within the LB formalism. 

2. Generalisation of the infinitesimal generators of groups of Lie-Backlund 
transformations 

In the notation of Anderson and Ibragimov (1979) the infinitesimal generator (LB 

symmetry operator) of a LB group G of transformations is 

where s = 1 , 2 , 3 , .  . . and summation is implied over repeated indices. If a is the 
group parameter then the ‘coordinates’ si, t)“, etc, give the first-order terms in the 
power series expansions in a of the variables XI, ua, etc. Thus for example 

x ” = x ’ + [ l a + . . . .  

The group G of transformations is a group of LB transformations iff the coordinates 
of (2.1) satisfy the recurrence relations 

rp = Di(t)=) - up(D,([’)  ( t i 2  = D i z ( l P ,  )-u;jDi2(tJ) . . .  (2.2) 

where Di is the operator of ‘total differentiation’ with respect to the variable xi,  that 
is 

(2.3) 

which acts on functions of the independent variables x i ,  u‘, ua,  u‘, . . . . Moreover 
each generator of the type (2.1) has an equivalent simpler form (Anderson and 
Ibragimov 1979, p63)  in which all the 5’ are zero. This equivalence concept and 
relations (2.2) mean that only operators of the form 

1 2  

(2.4) 
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need be considered. As soon as the first (or ‘defining’) term in 9 is known the rest 
follows by ‘prolongation’ or ‘extension’, via (2.2). For this reason an operator is often 
designated by its defining term. The defining term of the equivalent form of (2.1) is 
given by 

(2.5) 

In a particular application only part of 2 is needed and this is called the ‘relevant’ part. 

Jzeq= ( q p - r i ~ q )  a/aua =iju a/aua. 

Consider now a given system of differential equations 

w : w ” ( x , u , y  , . . .  , U  k ) = o  U = 1 , .  . . , M  (2.6) 

and suppose that the operator 9 in (2.4) generates a LB transformation group G, 

Definition 2.1. The system of differential equations (2.6) is invariant with respect to 
the Lie-Backlund group G, if the manifold given by the following infinite system of 
differential equations 

U ,  = 0 Diu, = 0 DiDjw, = 0 . . .  U = 1 , .  . . , M  (2.7) 
is an invariant manifold of the group G. 

Theorem 2.1 (Anderson and Ibragimov 1979). The system of differential equations 
(2.6) is invariant with respect to a Lie-Backlund transformation group G generated 
by a Lie-Backlund operator of the form (2.4) iff 

J z U V l W , ’ O  = 0 U = 1 , .  * * , M  (2.8) 
where w ,  = 0 is notation for the manifold defined by equations (2.7). In this case the 
set w is said to ‘admit’ the operator 2, 

2.1. Introduction of non-local variables into the theory of’ Lie-Backlund groups 

Operators of the type so far considered cannot be used as they stand in connection 
with integral equations or integrodifferential equations, since they do not involve 
integrals of functions of the independent variables (XI, u p ,  ym, $, . . .). Also one can 
find differential equations which admit operators depending on integrals (non-local 
symmetry generators) in, for example, Fushchich (1971,1974) and in Liischer and 
Pohlmeyer (1978). Konopelchenko and Mokhnachev (1979,1980) were the first to 
show how to augment LB group techniques to take account of integrals. These authors’ 
results will now be reobtained and amplified by a somewhat different approach, which 
shows that the operators introduced by them are formally related to the LB operators 
of Anderson and Ibragimov by a change of variables. To this end consider the operator 
(2.4) for the special case of only one U and one x, 

R = a /au  + Dq a /a (Du)  + DDq a /a (DDu)  + . . . . , (2.9) 

D U = U  with U = D-’u. (2.10) 

where D u  = ux has been employed and introduce the change of variables 

Here D-’ is the inverse of the operator of total differentiation and D-’v is to be 
considered a new U variable, functionally independent of and on the same footing as 
U ,  U,, etc. In a specific problem it may be possible to give an explicit form for the 
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D-' operator although for the most part in the present work it will be used formally. 
If U vanishes sufficiently rapidly as x +--CO we can self-consistently take D-'u = 
jLm u ( x ' )  dx'. The operator D-' is often referred to as a non-local operator and the 
variable D-'U as a non-local variable. Note that D-'u, = U, D-'u,, = U,, etc. I Some 
previous examples of the use of the D-' operator and reference to some of its 
properties may be found in Kruskal et a1 (1970) and in Olver (1977). 

The transformation (2.10) is invertible in the sense that all the U variables may 
be expressed in terms of the U variables and vice ucrsa. This is necessary in order to 
transform the operator (2.9) into the operator 

(2.11) 

having written 6 = Dq. 

desired or (2.10) may be replaced with 

D"u = U  U =D-"u 

Evidently the process by which (2.11) was obtained may be repeated as often as 

thereby introducing into (2.1 1) the partial derivatives with respect toD-"u for arbitrary 
n.  The extension to more than one U and more than one x is obvious. Note that 
many new independent variables are introduced in this process. The resulting operator 
takes the form 

R =.  . .+(D;'D;'. . . D ; l q P )  a/a(o;'o,'. . . ~ ; ' u " ) + .  . . + q n  a /aua  +. . . 
+Di,Diz.. . Di,q" a/a(Di,Di2.. .Dip")+.  . . . (2.12) 

With appropriate restrictions on the U", operators of the type (2.12) are useful in 
studying the invariance of integral and integrodifferential equations involving simple 
integrals of the type DG'D;'.. .DC1u". Any operator of the form (2.12) is a 
Lie-Backlund operator in the infinite-dimensional space of independent variables 
( x ,  U, U U,. , , , D - ' u , D - ~ u , .  , .) where the x, U, U are as before and D-'u. is the 
set of non-local variables DL'D;'.. . DL1u" (a = 1,. . . , m ;  i, = 1 , .  . . , n )  because it 
can be obtained from (2.4) by a change of variables. 

With the introduction of a set of new independent variables it is necessary to 
extend the definition of Di in (2.3) to 

1 '  2 1 

The form of the LB operator necessary to consider the invariance of equations 
involving integrals of all the independent variables (some of which are themselves 
integrals) so far introduced into the formalism will be obtained next. In other words, 
letting ( U )  be notation for dependence on any subset of the variables (x, U, U, 
y ,  . . . , D-'u, D-*u, . . .), we shall obtain the form of the operator acting on integrals 
of functions, of the form D-' f (u) .  First note that, using the integral notation of 
Konopelchenko and Mokhnachev (1979,1980), (2.12) may be written in the rather 

1 
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different form 

which may be written 

. . .  

1893 

(2.13) 

(2.14) 

where qf is the quantity in brackets. The notation Jdf means a sum over distinct 
functions f which are independent in the sense that ah/af = S ( h  -f). 

By regarding f ( u )  as some new variable, w, each term in (2.14) can be extended 
to integrals off  (U) thus introducing further new variables into the formalism (extension 
to derivatives of f ( u )  is redundant in that each such derivative is some new function 
?(U)). Unfortunately this last extension introduces an element of multiple counting; 
for example D-'U appears twice. The important point, however, is that if (2) is the 
set of all independent U variables, then by iteration of the process so far described 
the coordinate qz corresponding to any independent non-local variable 2 can be 
calculated. If (2.13) and (2.14) are reinterpreted so that ( U )  denotes dependence on 
all possible independent variables and qf includes the partial derivatives with respect 
to all such variables, then (2.13) and (2.14) define the most general Lie-Backlund 
operator. Therefore we have established the result that the most general LB operator 
is formally related to the LB operators of Anderson and Ibragimov by a change of 
variables. This suggests that many of the results obtained to date in the theory of LB 
operators will carry over to the more general type of operator considered here. It 
would be of interest, for example, to see to what extent the results in Kosmann- 
Schwarzbach (1979) and in Pirani et a1 (1979) carry over to the present situation. 
This work is based on the jet-bundle formalism of Ehresman (1953). It is our intention 
to investigate whether this formalism generalises to include non-local variables. 

Having established .the desired formal relationship mentioned above it should be 
noted that qz is most easily calculated by the infinitesimal method as employed by 
Konopelchenko and Mokhnachev (1979,1980). To do this, one simply finds the 
coefficient of the first power of the par.ameter a in the power series expansion 2. For 
example if Z = D;hD,;'uD& then qz is given by 

.qz = D ; L - , D ; ~ D ; ~ ~ u  + D;!uD;,~~D;!u +D;?UD;:UD;!~. 

The final generalisation of the total differential operator Di is given by 

Di = (aZ/ax')(a/aZ) (2.15) 

which acts on functions of the set of independent variables (2). An example of the 
use of the extended Di operator will be given in 0 4. Refer to equations (4.11) and 
the remarks that follow. 

IZ) 

2.2. Application to equations of Lie-Backlund groups involving non-local variables 

Definition (2.1) and theorem (2.1) require modification following the introduction of 
non-local variables. In the notation introduced in the previous subsection, consider 



1894 J J Cullen and J L Reid 

a system of differential, integrodifferential or integral equations 

w :  w , ( u ) = O  v = 1 , .  . . , M (2.16) 

and suppose the operator 2 in (2.14) generates a LB group G. 

Definition 2.2. The system (2.16) is invariant with respect to the Lie-Backlund group 
G if the manifold given by the system of equations, consisting of (2.16) and its general 
integrodifferential consequences, 

(2.17) 
Diu, = 0 DiDiw, = 0 * . .  

forms an invariant manifold of the group G with v = 1, . . . , M. 

the identities (Ibragimov 1976, Konopelchenko and Mokhnachev 1979, 1980) 
By following the method of Anderson and Ibragimov (1979, pp 62-3) and using 

2Di - D i 2  = 0 ( 2 . 1 8 ~ )  

2D;' - D ; ' 2  = 0 (2.186) 

it is easy to obtain the following modifications of theorem 2.1. 

Theorem 2.2. The system of differential equations (2.16) is invariant with respect to 
a Lie-Backlund group generated by a Lie-Backlund operator of the form (2.14) iff 

(2.19) 2w,Jw,+o = 0 v = 1 , .  * . , M 

where w ,  = 0 stands for the manifold defined by equations (2.17). 

It is obvious that each set of M equations in (2.17) is on the same footing as all 
the other such sets and that a LR operator 2 admitted by one set of equations is 
admitted by all its differential and integral consequences. These results were first 
noted by Ibragimov (1976) for differential consequences, and by Konopelchenko and 
Mokhnachev (1979,1980) for integral consequences. However, the invariance of 
integral consequences under groups of LB transformations is a generalisation of a well 
known result in the theory of Lie point groups. Suppose a single (for illustration 
purposes) differential equation, K ( u )  = 0, is invariant under a Lie point group, G, of 
transformations. An equivalent statement is that the solution manifold of K ( u )  = 0 is 
transformed into itself under G. Accordingly, so long as all possible initial values are 
allowed, the first integral of K ( u )  = 0, Jzo K ( u )  = 0, is also invariant under the group 
G. On the other hand, if a particular initial condition (constant of integration) is 
chosen, then the resulting differential equation has a lesser invariance group of 
transformations than does equation K ( u )  = 0. 

2.3. Secondary equations 

Given that a system of differential, integrodifferential or integral equations admits a 
certain LB operator 2, then many related systems will exist (beyond differential and 
integral consequences) which admit the same operator. To see how this can occur 
we prove a simple proposition for a single equation. 

Proposition 2.1. Let 
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(2.21) 

for two functions g and f where, as previously, (U) denotes dependence on one or 
more of the U variables; then 

r Z [ f ( U ) W ( U ) l l f ( u ) w ~ U ~ = O  = 0,  (2.22) 

that is, the 'secondary equation' f (u)w (U) = 0 also admits 2. 
Proof. The left-hand side of equation (2.22) yields 

[ g ( u ) f ( u ) w ( u  1 + f  cu,ri ,  ( ~ ) l l f ~ u ) w ~ u ~ = o .  (2.23) 

Whenf(u)w(u)=O then eitherf(u) =Oor w ( u )  = 0 (or both equalzero). Whenf(u) = O  
(2.23) vanishes trivially. When w ( u )  = 0 it also vanishes using (2.20), and so we have 
the result (2.22). 

The converse of this proposition is also true. To see this, first note that 

rZf-'(u) = - f - 2 ( u ) 2 f ( u )  = - g ( u ) f - ' ( u )  

and then apply this result to f ( u ) w ( u )  = 0 to obtain (2.20). 
The above is just one of many ways in which secondary equations can be constructed 

beginning with some basic equation w ( u )  = 0. Some concrete examples appear in 0 4. 
Bearing in mind that an operator admitted by the secondary equation is also 

admitted by its consequences, it becomes clear that the operator of a LB group of 
transformations may be admissible by a very large number of differential equations. 
This fact assumes some importance in relation to linearisation of equations, as 
discussed in § 4. 

2.4. Example of the use of non-local variables 

Consider the well known Burgers equation, a model for turbulence, 

ur  + uu, - U,, = 0. (2.24) 

If, for all t, the function U vanishes sufficiently rapidly as x +-a then D;' may be 
interpreted as S"dx', in other words there is never any contribution at the lower 
limit of integration. Then on integration equation (2.24) becomes 

w = D ; ' u r + $ u 2 - u ,  =o. (2.25) 

Equation (2.25) admits the LB operator 

I; = (2h, + h u )  exp(4D;'u) a/au +. . . (2.26) 

with the relevant part 

ere, = P + (2hr + hD;'D,u) exp($D;'u) a/a(D;'Dru) 

+(2h, ,  +2h,u +hu, +$hu2) exp(4D;'u) a/a(D,u) (2.27) 

where h(t ,  x )  is an arbitrary solution of the linear heat equation, that is h, - h,, = 0. 
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The proof is as follows. Employing (2.27) we have 

Po.lm+o = (2h, + ~ D ; ' D , u  + h u 2  - 2h,, -hu, -h2) exp($D;'u)l,,o = 0 

using (2.25) only. The Burgers equation (2.24), as a differential consequence of (2.2% 
also admits the operator (2.26). See Ibragimov (1980) where this is discussed without 
the use of non-local variables, but at the expense of introducing an extra equation, 
the so called Burgers potential equation. 

3. Transformation of Lie-Backlund operators 

Since many differential equations, especially nonlinear ones, are intractable in their 
original form, much effort has been invested in finding transformations to new 
equations which can be solved more easily. These transformations are rarely (if ever) 
groups of LB transformations. Indeed care must be taken to distinguish between a 
LB group of transformations (G) under which a given equation is invariant and a 
transformation ( T )  under which the given equation is transformed into a new equation. 
In general T will have neither an infinitesimal generator nor the previously discussed 
property of equivalence. It is of interest to investigate how the generator (2) of G, 
under which a given equation is invariant, is transformed when the equation itself is 
transformed under T. Aspects of this subject have been discussed by Bluman (1974), 
Peterson (19761, Anderson and Ibragimov (1979) and Ibragimov (1980). 

Consider then a given differential, integrodifferential or integral equation, K ( u )  = 
0, where here (U) denotes dependence on a finite subset of {Z}, the set of all 
independent ' U  variables'. Let T be the transformation 

T : v + u = u ( u )  ( 3 . 1 ~ )  

which is shorthand for the fact that under T all of the {Z}  can be expressed in terms 
of the (0) which is the set of all independent U variables. T is assumed to have an 
inverse such that 

T-':  U + v = v(u). (3.lb) 

The assumption of an inverse is necessary in order to effect the transformation of a 
differential operator involving the independent variables (however, a differential 
equation may be successfully transformed without such invertibility as for example 
the well known Miura transformation of the Korteweg-de Vries equation which is 
not known to be invertible in the sense discussed here). With an eye toward the type 
of application we have in mind a further assumption is made here, namely that (3.1) 
does not depend explicitly on the (x i )  (see the discussion at the start of § 4). 

Now T as applied to K ( u )  means K [ u ( v ) ] ,  that is, a change of variables by 
substitution and T-' as applied to say M ( u )  is M [ u ( u ) ] .  Therefore, by the chain rule, 
for each independent variable 2 

and an operator &(U) can now be transformed into an operator P ( u )  and vice versa. 
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Thus 

where f(u) = g [ u ( u ) ] .  This last equation has the useful form 

(3.3) 

Furthermore, by the identity ( 2 . 1 8 ~ ~ )  we see that (3.3) has the recurrence property 
(2.2) and ?(U) is a Lie-Backlund operator. In other words this result verifies that 
the prolongation structure applies in the new operator. 

The above result is also of considerable calculational significance. When using 
equation (3.2) to transform a given operator it is necessary to find only a single term 
of the new operator, since the remainder are determined by prolongation and may 
be found by recurrence for simple terms and by the infinitesimal method used by 
Konopelchenko and Mokhnachev (1979, 1980) for more complicated terms. Usually 
the defining term ?(U) a /au  in the new operator will be sought and so it is necessary 
to find all the terms in the old operator which contribute to this term in the new one. 
Just which terms are needed will depend on the variables on the right-hand side of 
equation (3.16). Some examples appear in 9 4. 

Now suppose 2 is admitted by K ( u )  = 0, that is 

2(u)K(u) lK(uJ '0  = 0 (3.5) 

P ( u ) M ( u ) l M ( " , = O  = 0. (3.6) 

and let this equation be transformed under T to give 

Therefore, the new equation M ( v )  = 0 admits the operator ?(U). But if (3.6) admits 
?(U), then by applying T-' it follows that K ( u )  = 0 admits $(U) and so the following 
proposition holds. 

Proposition 3.1. The equation (3.6) admits ?(U) if and only if the equation K ( u )  = 0 
admits R ( u ) .  

The special case when T is a Lie contact transformation has recently been treated 
by Kumei and Bluman (1982). By hypothesis each Lie contact transformation has an 
inverse. However, many other possibilities can now be handled. For example the 
Burgers equation (2.24) is transformed into the equation 

(3.7) 

(3.8) 
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Equation (3.7) is usually integrated to give the ‘potential’ equation 

(3.9) 

The operator (2.26) admitted by the Burgers equation is readily transformed under 
(3.8) to obtain the operator (Ibragimov 1980) h( t ,  x )  e”* a/acp, which is admitted by 
(3.7) and its integral consequence (3.9). 

1 2  
c o t + Z c p x - c p x x = 0 .  

4. Application to the linearisation of differential equations 

It is well known that every linear differential equation, L ( v )  = 0, admits the operator 
h ( x i )  a/&, where h ( x i )  is any solution of L ( v ) = O .  If L ( v )  contains only constant 
coefficients the linear equation also admits h, a/av, h,, a/au, . . . . Some linear differen- 
tial equations admit more complex LB operators as for example the ordinary differential 
equation 

(4.1) 
2 

U,,, + 4w0,u + 4w U, = 0 w = w ( x )  

which admits the operator (h,v - hv , )  a/av, where h ( x )  is any solution of (4.1). Another 
situation that can occur is that of the example in § 2.4. In that case the LB operator 
(2.26) depending on h, an arbitrary solution of the linear heat equation U, - U,, = 0, 
is admitted by the nonlinear equations (2.24) and (2.25). 

Operators such as the above, which depend on an arbitrary solution of some 
differential equation, will be referred to here as ‘free’ group operators, to be denoted 
by the form q (h  ; U )  a/au, indicating that h may depend on (. . . D i ’ h ,  h,  h,, . . . , D i ’ v ,  
U, U,, . . . 1. In general, such an operator represents an infinite number of independent 
operators, one for each solution, h, of the differential equation, but of course when 
h satisfies an ordinary differential equation the number of independent operators is 
finite. It follows from the discussion in 8 2 .3  that many equations related to a given 
equation, M ( u )  = 0, may also admit an operator admitted by M ( v )  = 0 itself. For 
example U times equation (4.1) and also the integral of the resulting equation 

(4.2) 

both admit the operator (h,v - hv, )  a/av admitted by (4.1). 
In a recent paper Ibragimov (1980) has drawn attention to the fact that a number 

of nonlinear differential equations of physical interest admit free operators of the 
general type q ( h  ; U )  a /au  involving an arbitrary solution of a linear equation. He uses 
this fact as the basis for a brief discussion of the group-theoretical background to the 
linearisability of differential equations and he also presents some examples. More 
recently Kumei and Bluman (1981) have given necessary and sufficient conditions, in 
terms of an admissible free group, for a system of nonlinear differential equations, to 
be linearisable by a Lie tangent transformation (they call it a Lie contact transforma- 
tion). Since a Lie tangent transformation may depend on no more than first-order 
derivatives the applicability of the results of Kumei and Bluman (1981) is limited. 
Our main purpose here is to show that the apparatus developed in the previous 
sections can be used to consider much more general linearising transformations. We 
shall obtain a complete group-theoretical characterisation of the known linearisability, 
by transformations other than Lie tangent transformations, of certain differential 
equations arising in physical problems. 

2 2 2  ~ . - 2 ~ ~ , , - 4 w  v +K=O 
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A basic question to be considered is that if a given nonlinear differential equation, 
N ( u )  = 0, admits a LB operator of the form ~ ( h ;  U )  a/au, does that mean it can be 
‘transformed’ into the linear differential equation of which h is a solution? We do 
not offer a general answer to this question, but based on our work to this point, we 
expect that any ‘transformation’ will occur in general in two stages. Firstly, we expect 
that a transformation T, such as that of 0 3, applied to N ( u )  = 0 will yield a secondary 
equation (or its integrodiff erential consequence) of the ‘target’ linear equation. Sym- 
bolically 

T N ( u )  = $(U). (4.3) 

The quantity $(U) in general differs from L(u)  where L(u)  = 0 is the target linear 
equation. The second stage will consist of the relationship between 9 ( v )  = 0 and 
L ( u )  = 0. In the first stage the admissible operator is transformed through T and T-’ 
but in the second stage we expect that the admissible operator will remain unaltered. 
One desirable possibility that can occur is that 9 incorporates L in such a way that 
L = 0 3 9  = 0. In that case every solution of L = 0 yields a solution of the original 
nonlinear equation. 

A second question is, assuming the pattern above is found to occur in practice, 
can it be used to find the transformation T? At pesent it is not clear if and when this 
can be done. It turns out that the key issue here is that of establishing what variables 
appear in T. Some clues to this may be found from the variables appearing in the 
admissible operator for the nonlinear equation but this method fails completely at 
times. 

In each of the following examples we shall introduce a nonlinear differential 
equation and obtain, or cite, an admissible LB operator of the kind 77 (h ; U )  a/&. We 
shall then obtain a straightforward group-theoretical characterisation of the linearisa- 
bility of the equation, essentially by tracing the ‘transformation’ described above, 
between it and the target linear equation. At the same time we shall suggest how the 
linearising transformation T might be discovered. The examples will illustrate the 
value of being able to treat non-local variables in considering the linearisation of 
differential equations from the group-theoretical standpoint. 

In the discussion which follows, the only restriction imposed a priori is the assump- 
tion that any transformation between two differential equations does not involve the 
( x ’ ) .  Transformations which depend on the ( x i )  are excluded because, for example, 
in mechanical systems they are in general not canonical and may destroy the Hamil- 
tonian structure of the problem as originally posed. 

4.1. The Thomas equation 

Example (4.1). The differential equation 

Uxr + (YU, +@U, + yU,ut = 0 (4.4) 

where a, p, and y are constant parameters, arises in consideration of certain fluid-solid 
exchange processes (see Whitham 1974) and was linearised by Thomas (1944). In 
the absence of any foreknowledge of the linearisability of (4.4) one might begin by 
finding the generators of all LB symmetries of the form 77 a/&, where 77 depends on 
no more than t, x and U. These are the Lie point symmetries and they are found by 
solving equation (2.8) for this restricted case (see Ames (1972) and Bluman and Cole 
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(1974) for the method). In this case (2.8) reduces to the set of linear partial differential 
equations ('determining equations') 

(4.5) ~ x r  + a V r  + PVx = 0 Vru + YVr = 0 V x u  + YVX = 0 V u u  + Y V U  = 0 

which have a solution 

77 = y- 'h  (x ,  t )  e-Yu 

where h ( x ,  t )  is any solution of the linear equation 

+ + D U X  = 0 

(4.6) 

(4.7) 

and so the required generator is y - ' h ( x ,  t )  e-''' a/&. It turns out that the approach 
of Kumei and Bluman (1981) is applicable to this problem, but instead of following 
it we wish to use this example to demonstrate how one may proceed in the more 
general case and perhaps find the linearising 'transformation'. 

We have previously stressed that in general a transformation T is expected to 
carry (4.4) into a secondary equation of (4.7) (it may even carry it into a consequence 
of the secondary equation). We have also pointed out that the secondary equation, 
9 ( v ) = O ,  may contain the linear operator L in such a way that L ( v ) = O  implies 
9 ( v )  = 0; that is, any solution of L(u)  = 0 is also a solution of 9 ( u )  = 0. With this in 
mind we emphasise transformations on solutions initially and attempt to find a relation 
between solutions of (4.4) and (4.7). Therefore, if g ( x ,  t )  denotes a solution of (4.4) 
we look for a relation 

g = E [ h ( x ,  t ) l  ( 4 . 8 ~ )  

6 = 6 [ g ( x ,  t ) ] .  (4.86) 

The bar over g is to distinguish the functional dependence of g on h from that of g 
on x or t ,  and likewise for the bar over h. The notation here is meant to indicate 
general dependence on, for example, ( . . . , D-*h, h,  h,, . . . ), and in order to proceed 
to a solution, an ansatz must be made about this dependence. In general, this is a 
very difficult step. In the present example we note that the operator admissible by 
the nonlinear equation involves only h and U and this motivates us to begin by 
assuming that 6 depends on g only. We then use this in equation (4.7) to obtain 
y l g  -Lgg = 0, having used the fact that g satisfies (4.4). This equation is easily solved 
to obtain 

h = b eye g = y-' log(h/b) (4.9a, 6 )  
where b is an arbitrary constant. 

Replacing g by U and h by U in (4.9) yields a corresponding transformation in 
these variables. It is found to be an invertible 1 - 1 point transformation between the 
equations (4.4) and (4.7). Therefore, this has turned out to be a particularly simple 
example in that neither non-local variables, secondary equations nor integral/ 
differential consequences have appeared. Nevertheless, it illustrates two important 
points. Firstly, the admissible operator provides a target equation for the linearisation, 
in this case the linear part of the original nonlinear equation. Secondly, a transforma- 
tion on solutions led to a transformation between the differential equations. In this 
case the variables appearing in the admissible operator suggested that a point transfor- 
mation should be tried initially. This approach in forming the ansatz for the transforma- 
tion worked out well here, but it is not always fruitful; see example (4.3). 
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Finally we wish to apply the transformation (4.9) (in the form involving U and U )  
to the admissible operator, y-'h (x, t )  e-Yu a/&, of the nonlinear equation. We simply 
note that a/au = (au/au)  a/&, and then make a change of variables to obtain the 
operator h ( a / a u )  admitted by the linear equation (4.7). 

4.2. The Burgers equation 

Example (4.2). The well known Burgers equation, a model for turbulence, may be 
written in the form 

(4.10) 

It admits no Lie point transformation (Katkov 1965) depending on an arbitrary solution 
of a linear differential equation. However, a LB operator of this kind can be found 
as follows (the method to be used is exemplary of the general method for finding LB 
operators admitted by differential equations). 

Assume 2 = q a / a u  is admitted by (4.10) with the ansatz that 77 = ~ ( t ,  x, Di 'u ,  U )  
and no more. It will also be assumed that (4.10) is a differential equation on a set of 
solutions where U and all its derivatives vanish sufficiently rapidly as x + -CO (for all 
time) to ensure that Jt,,f(u) dx' includes no contribution at the lower limit. In that 
way 0;' may be interpreted as I!, dx'. 

We use the notation p for Di'u (corresponding to the classical notation p for U,). 
Then with 

(4.11a) 

(4.1 1 b )  

the relevant part of 2 as extended is found using the recurrence relations (2.2). Thus 

(4.12) 

UI + uu, -U,, = 0. 

D,  = a/at  +D;*u,(a/ap)  + uI a/au +. . . 
D, = a/ax + U  a/ap +U, a/au +U,, a/au, +, . . 

krel = 77 w a u )  + ix ( a h ,  I + i ' ( a /au , )  + i"" (a/au,,) 
where 

5" = 77, + uqp + u x q u  

5"" =77,, f2uq.p f u u x r l u p  +2u,77,, fUX776 + U  7766 +u,,qu +u,77,,. 

5' = qt + ( D ; ' U l h p  + U'TU 

2 2 

The coordinates 5 are identified using superscripts here, to avoid any confusion with 
standard partial derivative notation. The form q denotes partial derivative with 
respect to the independent variable Di'u.  

Using (4.10) and (4.12) in the determining equation (2.19) yields 
1 2  2 

T r - T U  t 7 p + U , q + U q X + U  qp-qxx-2uqxp 

(4.13) 2 2 - 2uu,q up - 2u,qxu - U q p p  - U ,q,, = 0 

where application of w (U) = 0 made use of the integral consequence 

D;'ut+$U2-u, = o  (4.14) 

as well as equation (4.10) itself. Treating the left-hand side of (4.13) as a polynomial 
in powers of U, yields the following equations for 77 : 

( 4 . 1 5 ~ )  

~ - 2 q x u - 2 u q . p = 0  (4.156) 

q u u  = 0. ( 4 . 1 5 ~ )  

1 2  2 qt +TU q p  +uxq + u q x  -q,, -2uq.p -U q p p  = 0 
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By using the last two equations of this set 

77 = 2 ( ~ x ( t , x , ~ ) + U ~ p ( t , X , ~ ) )  

and if 4 is assumed to be of separable form h ( t , x ) c p ( p ) ,  ( 4 . 1 5 ~ )  can he used to 
obtain the solution 

77 = (hu +2h , )  (4.16) 

where h ( t ,  x )  is any solution of 

U r  - U , ,  = 0, (4.17) 

the linear heat equation. 
The admissible operator 77 a / & ,  with 77 given by (4.16), provides the target equation 

of the linearisation (4.17) and also suggests that perhaps a relationship on solutions 
should be sought in  the form 6 = &(g, Di 'g) ,  where g is a solution of the nonlinear 
equation (4.10). Inserting this into (4.17) and using (4.10) and (4.14) to eliminate 
the time derivatives of g yields the following power series in g, : 

2 6 g & f  -(6& +2hgDL1g)gx -&(D;'g)'g +$6D;'g = 0. 

This in turn yields a set of partial differential equations for 6 ( g ,  D i ' g ) :  

Cgg = 0 kgg +26,0;l, = 0 & , D ; l g , 2 g 2 + : 6 g ; l g  = O .  (4.18) 

The set (4.18) is easily solved and two solutions will now be considered separately. 

4.2.1. Linearisation by the Cole-Hopf transformation. The first solution is 

h = exp(-$D;'g) g = -2(h, /h)  (4.19a, 6 )  

and corresponding to this transformation on solutions we have 

U = exp(-$D;'u) U = -2(v,/v) (4.20a, b )  

acting on the equations. The latter is the well known Cole-Hopf transformation which 
transforms the Burgers equation into 

2v-2(u,  - U D , ) ( u r - u , , ) = O  (4.21) 

and vice versa. The last equation may be rewritten in the form 

2 0 , ( ( v ,  -vx,)v-l)  = 0 (4.21) 

which is a first differential consequence of a secondary equation of the linear heat 
equation. It admits the operator h ( a / d v )  admitted by the linear heat equation, as 
may easily be verified. 

Equation (4.21) incorporates the quantity vI - U , ,  in such a way that every solution 
of the latter is a solution of (4.21) also, and so by the transformation T, (4.19), a 
corresponding solution of the nonlinear equation (4.10) can be found. The reverse 
is not quite true however. By reviewing the way (4.19) was obtained the reader will 
see that a solution, g ,  of the nonlinear equation (4.14) must also satisfy equation 
(4.14) before it will yield a solution of the heat equation through the Cole-Hopf 
transformation. On the restricted solution set we have chosen, this condition is, of 
course, satisfied. Moreover, the transformation is 1-1, because even though (4.19b) 
allows for many solutions h to yield the same g ,  ( 4 . 1 9 ~ )  rectifies this situation. 
Therefore, it can be said that on a set of solutions which vanishes sufficiently rapidly 
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as x + -00, the Cole-Hopf transformation is a 1-1 linearising map for the Burgers 
equation. 

There is nothing new in the results of the last paragraph, which follow directly 
from the Cole-Hopf transformation. Our point is that the underlying group structure 
is associated with a true linearisation, albeit on a restricted solution set. We complete 
our consideration of the group-theoretical aspect by showing how to transform the 
operator h ( a / a v )  admitted by the heat equation and the secondary equation (4.21) 
into 7 ( h  ; U )  a/au admitted by the Burgers equation, where 7 is given by (4.16). We 
apply (4.20) to h ( a / a u )  by using equation (3.2). Part of the extended operator is 

? ( V I  = . . . + ~ ; ' h  (a/a(o; 'u))  + h (a /au)  + h, (a/av,) + . 
The idea is to pick up all of the terms involving a /au  and thereby obtain the defining 
term in *(U). Since U is a function of U and v,  only these are 

a a u  a V ,  a _ -  - ,  . .+- -+. . . =.  . . + 2 1 - + .  . . 
au av a u  U au 

a au a 2 a  
av, av, a u  v au 

and 

_-  - ,  , .+- -+. , , = .  . .-- -+. . , , 

Equation (4.20) must now be used to obtain U and v,  in terms of the U variables giving 

(4.22) 

admitted by the Burgers equation. We have, therefore, traced the admissible group 
from the linear equation, through the secondary equation to the nonlinear equation. 
The reverse procedure might just as well have been followed. 

The Cole-Hopf transformation (4.20) has been criticised because when U vanishes 
as x - , - a ,  U remains finite and so the solutions, h, are functionally very different 
from the solutions, g. This difficulty is removed by using the second solution of (4.18), 
now to be discussed. 

R(u) = . . . - (hu +U,)  eP"(a/au) + . . . , 

4.2.2. Linearisation by the transformation of Taflin. A second solution to (4.18) is 
- 
h = -& exp(-$D;'g) g = -2h(l +D,'h)-' (4.23a, b )  

with the corresponding transformation in the U and v variables: 

U = -$U exp(-$D,'u) U = -2v(l +D,'v)- ' .  (4.24a, b )  

This transformation is due to Taflin (1981) who showed that it has certain desirable 
properties on the Schwartz space of functions decreasing rapidly at infinity; for example 
when U is the Schwartz space, so is U and vice versa. For this reason we choose to 
discuss this transformation in the context of solutions of the Burgers equation which 
are in the Schwartz space, a condition somewhat more restrictive than that introduced 
at the beginning of our discussion of the Burgers equation. Our choice then implies 
that we also restrict ourselves to solutions of the linear heat equation which are in 
the Schwartz space. 

The transformation (4.24) transforms the nonlinear Burgers equation into 

(4.25) 
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and conversely. Equation (4.25) is the first differential consequence of a secondary 
equation of the first integral consequence of the heat equation. It admits the operators 
h (a lau) ,  h,(a/au), etc, admitted by the latter. 

The way in which the quantity ut - U,, appears in (4.25) requires that, a solution, 
h (x, I ) ,  of the heat equation most also satisfy the equation 

D;'u, - U x  = 0 (4.26) 

in order to satisfy equation (4.25), but of course (4.26) is satisfied by each h in the 
Schwartz space. Each such solution then yields a solution of the Burgers equation 
through the transformation T of (4.23). If we begin with a solution, g, of the Burgers 
equation, it must also satisfy equation (4.14) to yield a solution of the heat equation, 
but this condition is also met when g is in the Schwartz space. Add to all this the 
fact that (Taflin 1981) (4.23) is 1-1 on the Schwartz space and we .have the result 
that it is a 1-1 linearising map for the Burgers equation on that space. Once more 
our point is not that these are new results, but that the underlying group structure is 
associated with a true linearisation, albeit on a restricted solution set. 

We complete our discussion of the group-theoretical aspect by showing that Taflin's 
transformation (4.24) acts on the operator h,(a/aU), admitted by the heat equation 
and by (4.25), to yield the operator (4.22) admitted by the Burgers equation; this is 
an example of the application of equation (3.2) involving the manipulation of non-local 
variables. Firstly we note that part of the extended operator is 

Y ( U )  = . . . + h (a/a(o- 'u )) + h,  (a /au)  + h,, (a/au,) + . . . . 
Now U is a function of U and D-'v only and so we pick up the defining term of the 
transformed operator by computing 

a u  a 2 a  a 
av av au  I+D;'U a u  

- . . .+- -+. . . = .  . .- -+. . . _ -  

and 

au  a 2v a 
a(D; u ) a(o;'u) au  (1 + D ; ' u ) ~  au  

-+ a -- - .  . *+- -+. . . = ,  . .+ 

Equation ( 4 . 2 4 ~ )  is now used to obtain U and D;'u in terms of the U variables giving 
precisely (4.22) as claimed. 

4.3. Linearisation of an ordinary differential equation of classical mechanics 

Example (4.3). The ordinary differential equation 

u , , + w ~ u + K u - ~ = O  (4.27) 

where w is an arbitrary function of x (the time), arises in consideration of the motion 
of a charged particle in a uniform, time-dependent, axial magnetic field (Lewis 1967, 
Reid 1974). In that case K is the square of the angular momentum. The equation 
appears frequently in the literature beginning perhaps with Ermakov (1880) and it 
can be linearised in two different ways, both of which will now be considered. 

4.3.1. Linearisation to a third-order equation. Equation (4.27) admits the LB operator 

(ih,u - hu,)  a /au  (4.28) 
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where h is any solution of the third-order linear equation 

(4.29) 

This is the equivalent form, by equation (2.5), of the admissible operator appearing 
in Ray and Reid (1979). It is noteworthy that the target equation (4.29) is not the 
linear part of (4.27). 

Although no point transformation, with U a function of v only, can transform 
(4.27) into (4.29), such a transformation might very well transform it into the integral 
consequence of some secondary equation of (4.29). So we make the ansatz that 
i = i ( g )  solves (4.29), where g is a solution of (4.27), and substitute in (4.29) to get 

2 
U,,, +4w v,  +4wwx,v = 0. 

having used equation (4.27) to substitute for g,, and g,,,. The above equation has 
the solution 

(4.30a, 6)  g = h 'I2. 2 h = g  

Applying (4.306), in the form U = u 1 / 2 ,  to equation (4.27) yields (Ray and Reid 
1979) 

(4.31) 

This is the same equation (4.2) discussed earlier and so we recognise it as a first 
integral of (4.29). Because of the integrating factor v involved, it is, in the language 
we have been using, a first integral consequence of the secondary equation 

(4.32) 

of (4.29). 
Since K is a constant (some given number), equation (4.31) is only one of many 

first integral consequences of (4.32) corresponding to the many possible different 
values of K ,  and so its solution set is smaller than that of (4.32) or (4.29). In fact we 
can be more explicit, for the general solution of (4.29) is known (Chini 1897) and is 
given by 

2 
U, - ~ v v , ,  - 4 ~ ~ v ~ - 4 K  = O .  

U ( U x x x  + 4 0  2 U x  + 4ww,v) = 0 

v =Az:  + B z ~ z ~ + C Z ;  (4.33) 

where z1 and z2  are linearly independent solutions of the linear harmonic oscillator 
equation z,, +w2z = 0. When (4.33) is substituted in (4.31) it is found to satisfy it on 
condition that 

(C2-4AB) W2 =4K (4.34) 

where W is the Wronskian of z1 and z2.  Employing (4.306) we may now write the 
general solution of the original nonlinear equation as U = (U*)'", where U *  is the 
solution of the linear equation (4.29) as restricted by (4.34). Once again we have 
been able to obtain a one-to-one linearising map, in this case by picking out the 
appropriate subset of the general solution of the linear equation. 

To see the underlying group-theoretical structure associated with this linearisation 
we note that when the transformation T of (4.30) (written in terms of U and U )  is 
applied to the free operator (4.281, it yields the free operator (h,u - hv,) a/av, admitted 
by equations (4.29) and (4.31). The actual calculations here are simple and the details 
are omitted. 
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It is remarkable that the linearisation of equation (4.27) has been characterised 
group theoretically in terms of the operator (h,u - hu,) a / &  and not in terms of the 
simpler operator h(a/au) ,  also admitted by the linear equation (4.29). This situation 
is related to the previously mentioned fact that (4.31) is only one of many integral 
consequences of (4.29) and that its solution set is smaller than that of (4.29). Recall 
that when a differential equation admits a Lie point symmetry operator it is equivalent 
to its solution manifold being transformed into itself under the corresponding Lie 
point group of transformations. If we integrate the differential equation to produce 
a new equation with a smaller solution set we can expect that some or all of the 
original symmetries will be lost. This is just what happens here, for the operator 
h ( a / a v )  is not admitted by (4.31) and so its counterpart ( h / u )  a/au is not admitted 
in the usual sense by the nonlinear equation (4.27). However, when the constant K 
is interpreted as the variable initial value of u3uxx +w2u4 it can be shown that ( h / u )  d/au 
is admitted by equation (4.31) (see Cullen 1982 for details). 

4.3.2. Linearisation to the linearpart. It is suggested by the foregoing that the condition 
that h ( x )  satisfy the third-order equation (4.29) might be replaced by, say, k(n)  
satisfying the equation 

u ' , , + ~ ~ u ' + K ~ - ~ = o  (4.35) 

so long as h = k 2 ,  and subject to the restriction implied by (4.34). Since K in (4.35) 
may assume the value zero we may further expect that the operator 

(kk,u - k2u,)  d/au (4.36) 

(obtained from (4.25)) is admitted by equation (4.27), where k satisfies the linear 
equation 

v',, + w 2 c  = 0. (4.37) 
This is, indeed, found to be the case and it raises the possibility that the original 
nonlinear equation (4.27) can be transformed to its linear part, equation (4.37), or 
to one of its consequences. 

To find this transformation, make the ansatz that E = E(g, D;'g-2), where g is a 
solution of (4.27). The motivation for introducing the variable D;'g-2 is admittedly 
weak, but it does appear repeatedly in work dealing with equations like (4.27)-see, 
for example, Eliezer (1979) and Leach (1981). Substituting this ansatz into equation 
(4.37) and proceeding in the usual manner yields a set of partial differential equations 
for E which can be solved to obtain 

k = g exp(-JKD;'g-2) g =(4K)1/4k(D;'k-2)"2. (4.38a,b) 

In terms of U and v' the transformation takes the form 

v' = U exp(-JzD;'u-2) = (4K)'/4;(D;';-2)"2 (4.39a,b) 
and when U is substituted into (4.27) it yields the secondary equation of (4.37): 

(4K)'/4(v',, + ~ ~ v ' ) ( D ; ' v ' - ~ ) ' / ~  = 0. (4.40) 
This result represents an entirely satisfactory linearisation of the original equation 
(4.27) because the general solution of the linear equation (4.37) satisfies (4.40) and 
so is transformed into a solution of (4.27) via (4.386). Since the latter solution contains 
two arbitrary constants it is the general solution of (4.27). 



Lie-Backlund groups 1907 

Turning now to the group-theoretical aspect we find that equation (4.40) admits 

(4.41) 

which is obtained when the transformation (4.39) is applied to the operator (4.36). 
It has the same form as (4.36) and it is an interesting exercise in the manipulation 
of non-local variables to obtain it and to show explicitly that it is admitted by (4.40). 
We begin by noting that the operator (4.36) as extended is 

2 =.  . .+qf (a /ap ; 'u - ' ) )+ .  . . + q ( a / a u ) + .  . . . (4.42) 

The two terms explicitly shown are the relevant ones because v' is a function of the 
independent variables U and D ; ' u - ~  and so the coordinate of in the transformed 
operator may be obtained from them with 

and 

the operator 
E = (kk,C - k'ii,) a/av' 

a l a u  = . . . + (av'lau) ala; +. . , 

These two are easily evaluated using the transformation (4.39) and they are 

a /au  = . . . + ( ~ K ) - ' / ~ ( D ; ' G - ~ ) ' / ~  ala6 +. . . 
a/a(D;'u-') = . . . +JKv'(a/av') +. 

The coordinate qf is the first-order increment in D ; ' L 2  and is found to be 
- ~ O ; ' ( T ~ U - ~ )  which integrates to - k 2 L 2 .  Finally, transforming to the v' variables, 

qf = &2v'-'(D;1fi-2)-1, 

Substituting for q, qf, a/au and a/a(D;'u-') in (4.42) then yields the operator (4.41). 
Dispensing with the constant (4K)'l4, the first differential consequence of (4.40) is 

(4.43) DX(CXX +w2;)(D;';-2)'/2 ++(;,, +w2v')(D;' i i -2)- '~2~-2 - - 0  

Ere, = -k2v'-' a/a(o;'ii-2) + E. 
and the relevant part of the operator (4.41) as extended is 

Applying this to (4.40) gives 

[ E ( CXx + w 'v')](D;' K') '" - i k  '( v',, + w 'v')(D ;' v'-2)-1/2v'-2 

and this is zero on the manifold of (4.40) and (4.43), which proves that the operator 
(4.41) is admitted by the secondary equation (4.40). It is easy to verify that it is also 
admitted by (4.27) itself. 

Once again it is remarkable that the linearisation of equation (4.27) has been 
characterised group theoretically by means of an admissible operator of the linear 
equation and which is not of the simple form k(a/au'). However, this latter operator 
is admitted by the secondary equation (4.40) and moreover k (alav') can be transformed 
into the following operator admitted by the nonlinear equation (4.27) 

[k exp(JKD;'u-') - (~K) ' /~D; '  (ku-3  exp(3JK~;'u-')) 

x uexp(-2JK~;'u-')1(a/au). 

For the details of the related calculations see Cullen (1982). 
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5. Summary and conclusions 

The recent augmentation of the theory of LB groups by Konopelchenko and 
Mokhnachev (1979,1980) introducing non-local variables into the formalism is an 
important development. In the present work we have shown that the LB operators 
of these authors are related to the LB operators of Ibragimov and Anderson (1977) 
by a change of variables. We have observed that if a given differential, etc, equation 
admits a LB operator, then many related (‘secondary’) equations admit the same 
operator. These secondary equations are in addition to the integrodifferential con- 
sequences of the original equation. 

The Burgers equation is shown to admit a LB free group operator which involves 
a non-local variable. This is essentially the same operator discussed by Ibragimov 
(1980), without recourse to the non-local formalism, but at the expense of introducing 
an extra differential equation, the Burgers potential equation. The Burgers equation 
is known to be linearisable by the Cole-Hopf transformation and by a more recent 
transformation due to Taflin. By employing the above LB free group operator (which 
depends on an arbitrary solution of the linear heat equation) and the concept of 
secondary equations, a straightforward group-theoretical characterisation of these 
linearisations is found. The ordinary differential equation, U,,  +w2u + K u - ~  = 0, can 
be linearised in two different ways, each of which can be characterised group theoreti- 
cally by using the concepts of admissible free group operators, secondary equations, 
and integral consequences. 

In all the above work the non-local variables were treated as independent, on the 
same footing as the usual independent variables of LB theory, without giving rise to 
any contradictions or other difficulties. 

In the course of our study of linearisation we considered certain ‘transformations’ 
between nonlinear and linear equations. We wish to emphasise that these ‘transforma- 
tions’ in general occur in two stages; firstly a transformation T to a secondary equation 
and then a relationship such as those of 52.3 to the linear equation itself. The 
secondary equation is often of such a form that it reduces to the linear equation on 
some particular function space or set of solutions of the linear equation. 

In pursuing the kind of group-theoretical approach to linearisation described here, 
the most difficult step will always be the search for an admissible free group operator 
of the nonlinear equation. The difficulty arises mainly from the unlimited number of 
independent variables which may appear in LB group operators. Once such an 
admissible group is found for some nonlinear equation, it is the authors’ conjecture 
that a linearisation exists and can be found. Granted, a second ansatz must be made 
about the independent variables appearing in the linearising transformation; but with 
linearisability suggested by, and a target equation provided by an admissible free 
group, a determined effort will almost certainly reveal the needed transformation. 

Acknowledgments 

The authors are particularly grateful to Dr R L Anderson for many useful and 
stimulating discussions. The authors are also grateful for useful discussions with Dr 
M Flato, Mr J Szmigielski and Dr P Winternitz. 



Lie-Backlund groups 1909 

References 

Ames W F 1972 Nonlinear Partial Differential Equations in Engineering vol I1 (New York: Academic) 
Anderson R L and Ibragimov N H 1979 Lie-Backlund Transformations in Applications (Philadelphia: 

Backlund A V 1873 Lunds Unioersitets Arsskrift 10 1 
- 1876 Math. A n n .  IX 297 
_. 1880 Math. Ann.  XVII 285 
- 1882 Math. Ann.  XIX 387 
Bluman G W 1974 Proc. Symp., Calgary, Alberta 302 
Bluman G W and Cole J D 1974 Similarity Methods for Differential Equations (Berlin: Springer) 
Chini M 1897 Atti Accad. Sci. Torino 33 505 
Cullen J J 1982 PhD Thesis University of Georgia 
Ehresman C 1953 Introduction a la Theorie des Structures Infinitesimales et des Pseudo-groups de Lie (Paris: 

Eliezer C J 1979 Hadronic J .  2 1057 
Ermarkov V P 1880 Univ. Izv .  Kieu 20 1 
Fushchich V I 1971 Theor. Math. Phys. 7 3 
- 1974 Lett. Nuooo Cimento 11 508 
Ibragimov N H 1976 Sou. Math. Dokl. 17 1242 
- 1980 Math. U S S R  Sbornik 37 205 
Ibragimov N H and Anderson R L 1977 J.  Math. Anal .  Appl. 59 145 
Katkov V L 1965 Z h .  Prikl. Mekh. Tekh. Fiz. 6 105 
Konopelchenko B G and Mokhnachev V G 1979 Sou. J.  Nucl. Phys. 30 288 
- 1980 J.  Phys. A :  Math. Gen. 13 3113 
Kosmann-Schwarzbach Y 1979 Lett. Math. Phys. 3 395 
Kruskal M D, Miura R M, Gardner C S and Zabusky N J 1970 J.  Math. Phys. 11 952 
Kumei S and Bluman G W 1982 S I A M J .  A p p l .  Math. 42 1157 
Leach P G 1981 J.  Math. Phys. 22 465 
Lewis G R 1967 Phys. Rev.  Lett. 18 510 
Lie S 1874a Kristiania Forh. Aaret 16 237 
- 1874b Math. A n n .  8 215 
- 1880 Arch. Math. og Naturvidenskab 5 282 
Liischer M and Pohlmeyer K 1978 Nucl. Phys. B 137 46 
Olver P J 1977 J .  Math. Phys. 18 1212 
Peterson D R 1976 PhD Thesis University of the Pacific 
Pirani F A E, Robinson D C and Shadwick W F 1979 Local Jet Bundle Formulation of Backlund 

Transformations (Dordrecht: Reidel) 
Ray J R and Reid J L 1979 J .  Math. Phys. 20 2054 
Reid J L 1974 PhD Thesis Clemson University 
Taflin E 1981 Phys. Rev. Lett. 47 1425 
Thomas H C 1944 J.  A m .  Chem. Soc. 66 1664 
Whitham G B 1974 Linear and Nonlinear Waoes (New York: Wiley) 

SIAM) 

Colloque Internationale de CNRS) 


